Application of N, S-codoped TiO2 photocatalyst for degradation of methylene blue

نویسندگان

  • Rahmatollah Rahimi
  • Mahboubeh Rabbani
  • Samaneh Safalou Moghaddam
چکیده

In this study, N, Scodoped titania photocatalyst was synthesized through an efficient and straight forward method using a single source, ammonium sulfate, as modification agent of titanium isopropoxide (TTIP) precursor. The catalyst was characterized by X-ray powder diffractometer (XRD), element Analysis of carbon, hydrogen, nitrogen (CHN), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), energy dispersive X-ray spectroscopy (EDX) and IR spectroscopy. Visible light photocatalytic studies were carried out using methylene blue as pollutant. The photodegradation efficiency of methylene blue using N, S-codoped TiO2 were 98%. Also the degradation of methylene blue was tested using P25 photocatalyst for comparison. The result of photocatalytic degradation of methylene blue indicated that photocatalytic activity of N, S-codoped TiO2 (98%) was better than P25 (82%) photocatalyst, because the band gap of N, S-codoped TiO2 is lower than of P25 photocatalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of TiO2–zeolite as photocatalyst for photodegradation of some organic pollutants

Immobilization of catalysts on the surface of some inert supports makes therecovering step easier. Because of the specific physicochemical properties, zeolites are good candidate as catalyst supports. In this study, zeolite X was synthesized by natural kaolin and TiO2 was incorporated into zeolite phase by impregnation method. Degradation of Safranin Orange, methylene blue and 2,4–di...

متن کامل

Application of TiO2–zeolite as photocatalyst for photodegradation of some organic pollutants

Immobilization of catalysts on the surface of some inert supports makes therecovering step easier. Because of the specific physicochemical properties, zeolites are good candidate as catalyst supports. In this study, zeolite X was synthesized by natural kaolin and TiO2 was incorporated into zeolite phase by impregnation method. Degradation of Safranin Orange, methylene blue and 2,4–di...

متن کامل

Photocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation

In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectan...

متن کامل

Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology

The photocatalytic degradation of methylene blue was investigated with TiO2 and Fe2O3 nanoparticles supported on natural zeolite. The synthesized photocatalyst was characterized by XRD, XRF, FT-IR, EDX, FE-SEM, and BET analyses. The results of XRD, FT-IR, and EDX confirmed the successful loading of Fe3+ doped TiO2 nanoparticles on natural zeolite. Further, the FE-SEM results confirmed the depos...

متن کامل

Mesoporous WO3/TiO2 Nanocomposites Photocatalyst for Rapid Degradation of Methylene Blue in Aqueous Medium

This paper presents the wet chemical synthesis of WO3/TiO2 nanocomposites using hydrothermally prepared monoclinic WO3 and anatase TiO2 nanoparticles as composite matrices and filler, respectively. The nanocomposites were prepared in different compositions, i.e. WO3:TiO2 ratio (w/w) of (1:1), (1:3), and (3:1). Physicoche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012